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Momentum space renormalisation of Aqb4 
in curved space-time 

N D Birrell 
Department of Mathematics, King’s College, University of London, Strand, 
London WC2R 2LS, UK 

Received 19 July 1979 

Abstract. As an extension of previous work which developed a method for performing 
calculations in curved space-time quantum field theory using momentum space, it is shown 
how the technique can be used to great advantage in the computation of both the divergent 
and finite parts of S-matrix elements for self-interacting Ab4 theory. Using dimensional 
regularisation all the pole terms in the self-energy up to second order are calculated, to 
confirm that, to this order, mass-independent renormalisation can be successfully applied. 

1. Introduction 

In a recent paper (Birrell 1979a) a method of performing quantum field theory 
calculations in curved space-time using momentum space was presented. The motiva- 
tion for the development of this method was that it allows an efficient means of 
performing calculations which were previously not feasible. To illustrate this it was 
shown how the method could easily be used to calculate the number of particles 
produced from a free field in an expanding universe. It was also mentioned how the 
Feynman propagator for a free field could be calculated using the momentum space 
technique and that this would be of value in determining the energy momentum tensor 
for the field, or the effects of interactions. Although in the introductory paper (Birrell 
1979a) no examples of such calculations were given, it is in these areas that the 
momentum space method is most valuable. 

The reasons for wishing to calculate the energy momentum tensor, or the effects of 
self-interactions of a field in curved space-time, are numerous. The energy momentum 
tensor, via the Einstein field equations, determines the evolution of the space-time. It is 
also imperative that we should consider interacting fields rather than free fields since it 
is the former which have observable effects in nature apart from coupling to gravity. In 
this paper it will be shown h0.w the momentum space method can be used to facilitate 
calculations involving self-interacting, scalar fields in curved space-time. In passing, 
the property of the method which also makes it so useful for energy momentum tensor 
calculations will be pointed out. Such energy momentum tensor calculations will be 
described in a future paper. 

Preliminary estimates of the effects of self-interactions on particle production have 
been made in a paper by Birrell and Ford (1978) where it was found that such effects 
could be significant compared with the production of free particles by the means 
described in the previous paper on the momentum space method (Birrell 1979a). 
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570 N D Birrell 

Unfortunately these estimates were hampered by calculational difficulties and were 
restricted to a small number of situations. However, the type of difficulties encountered 
were of just the type that the momentum space method was designed to solve, as shall be 
made evident in the next section. In particular, it was found not to be possible to make 
much progess without resorting to numerical calculations, and even then only with 
considerable difficulty. One of the strong points of the momentum space method 
described previously (Birrell 1979a) is that it facilitates numerical work, allowing the 
adoption of techniques long used in nuclear physics. 

In turning to interacting quantum field theory, one is faced with the problem of 
ultraviolet divergences, just as in flat space. A detailed, general analysis of the 
ultraviolet divergences arising in self -interacting quantum field theories in curved 
space-time has been undertaken by Birrell and Taylor (1978) who find, using Green 
function diagram techniques and the theory of the products of distributions, that the 
overall divergence structure is the same as in flat space, and that all the infinities can be 
removed by renormalisation of constants appearing in the Lagrangian. This is provided 
that it can be shown that all the infinities arising from overlapping divergences cancel, or 
can be made to cancel by a suitable modification to the theory. If this is not the case, 
then, as has been pointed out in a recent paper of Bunch et a1 (1979), there can arise 
non-geometrical, state-dependent infinities, which cannot be absorbed into existing 
constants in the Lagrangian. Bunch et a1 (1979) and T S Bunch (private com- 
munication) note that they can show that in a conformally flat space-time all such 
state-dependent infinities cancel to second order in perturbation theory in theory 
(although that this is generally the case is not clear (see Birrell and Taylor (1978)). 

The main aim of this paper will be to show how the momentum space method 
handles ultraviolet divergences, as well as setting the stage for calculation of the 
interesting finite parts of S-matrix elements that will play an important role in 
cosmological or astrophysical processes, and which will be discussed elsewhere (Birrell 
et a1 1980). We shall see that the divergences can be handled independently of the 
space-time under consideration, leaving the finite part of the S-matrix elements to be 
calculated without need for any regularisation scheme, thus considerably simplifying 
their numerical computation. 

In the next section relevant parts of the momentum space method will be reviewed, 
with particular emphasis on the calculation of the Feynman propagator. In § 3 it will be 
shown how the method can be used to calculate the divergences in A44 theory to second 
order, and that the parts of the S-matrix which depend explicitly on the space-time 
under consideration are all finite (apart from some terms proportional to the scalar 
curvature). The final section concludes by mentioning desirable future applications of 
the scheme outlined in 03 2 and 3. 

2. Review of the momentum space method 

We review and extend to n-dimensional space-times, the relevant parts of Birrell 
(1979a) in the framework of a scalar field with A44 self-interaction as discussed in 
Birrell and Ford (1978) or Bunch et a1 (1979). We confine our attention to a 
conformally flat space-time with metric 
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although extension to certain other metrics would not be difficult as was mentioned in 
Birrell (1979a) (where the limitations of the momentum space method in this respect 
were also discussed). The scalar field has Lagrangian density 

2 = 2 0 + 2 1  (2.2) 

(2.3) 

where 
- 

2 -J-J-  - g[g'*" a,4 az,q5 - (m2+ 5 ~ 4 ~ 1  

(2.4) 

with m and 5 the renormalised mass and conformal coupling constant respectively, and 
A B  the bare interaction coupling constant. We note that the notation used here is 
slightly different from that of Birrell (1979) in that 5 (this paper) = (5 +$) (Birrell 1979) 
in four dimensions. This is for conformity with the papers on interacting field theory in 
curved space-time mentioned above (we use Misner et ai (1973) (---) sign con- 
ventions). 

In the next section we wish to calculate Feynman diagrams which are written down 
in terms of the Feynman propagator G&, x'), which satisfies (see Birrell 1979a,b) 

J~~[0,+~R(x)+m2]G~(x,x')=-S"(x-x'). (2.5) 
Defining 

gF(x, x ') = [l l(~)]("-~' /~ GF(x, x ') [a (x ')I(" -2)/2 (2.6) 

equation (2.5) gives 

[ o x  $- m']gF(X, x') = -6"(x  -x') v(v)gF(.x, x ' )  (2.7) 
where 0, is the flat space-time D'alembertian, a", and we have defined 

with 

m- = mR(q = -CO) (2.9) 

(the removal of the restriction R(-co) < ~3 implied by (2.9) is discussed in 8 7 of Birrell 
(1 979a)). 

If we let GF(x, x') be the flat space-time Feynman propagator, given in momentum 
space by 

&(x, x') -- (2.rr)-" e i p ( x - x ' )  &(PO; Ipl) d"p I 
with 

2 2  &(PO; Ipi)=(pi-IpJ -m-  i-ic).-' 

then it was shown in Birrell (1979a) that 

(2.10) 

(2.11) 
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and the ‘ t  matrix’ tk satisfies a Lippmann-Schwinger type equation 
00 

t k ( p , p ‘ ) =  v ( p , p ’ ) - [  GF(q; k)Q(p,q)tk(q,P’)dq (2.14) 
-m 

e ( p ,  q )  being the Fourier transform of V ( 7 ) :  

(2.15) 

which will also be written as c ( p  -4). Substituting (2.14) into (2.1 3 )  gives the form of 
gF which will be used in the next section: 

1 “  
2lT -a V(rl) d 7  q )  = - J- e-l‘P-q’rr 

3 

r=l 
gF(q, q’; k ) =  gg’(q, 4‘; k )  (2.16) 

where 

gk“(q,q’; k ) S a ( q - q ’ ) & ( q ;  k )  (2.17a) 

gg’(4, 4’; k)=-GF(q;  k ) c ( q ,  q’)GF(q’; k )  (2.17b) 

gg’(q, 4 ’ ;  k ) =  &q, k ) d ~ ( q ’ ;  k )  [ GF(P; k ) e ( q  - p ) t k ( p ,  4‘)  dp. ( 2 . 1 7 ~ )  

The corresponding coordinate space g‘” are obtained by substituting (2.17) into (2.12). 
gi.“ and gi;“’ are, respectively, the first and second Born approximations to gF. 

It is at this point that the advantage of using this method in calculating the energy 
momentum tensor for a free field becomes evident. It is not difficult to verify that all the 
divergences which arise in calculating the energy momentum tensor arise from gi.” and 
gf’ in a massless theory, and from these, and the third Born approximation term, 
obtained by putting e ( p  - q )  for tk (p ,  q )  in gg’, in the massive case. Thus it is only 
necessary to regularise and renormalise these lowest order Born contributions, leaving 
a finite remainder involving the t matrix, which can be calculated numerically, for 
example. In fact Davies and Unruh (1979) have calculated, by coordinate space 
methods, the renormalised energy momentum tensor for a rnassless field resulting from 
gi.“ and gg), thus taking care of all the infinities. To find the complete stress tensor for a 
given space-time, one now only needs to solve (2.14) for t k ,  substitutc it into (2.17c), the 
result of which goes into (2.12) to be differentiated to form the remainder of the stress 
tensor which is added to Davies and Unruh’s result. Although this may sound 
complicated, since all the infinities have already been taken care of one is only dealing 
with finite quantities, making the entire procedure most amenable to numerical 
computation. It is hoped to publish details in the near future. 

It is for reasons similar to those just discussed for the stress tensor that make the 
momentum space method so advantageous for use in interacting field calculations. It is 
to these that we now turn. 

m 

-a 

3. Perturbation calculations in momentum space 

Since nearly all flat space-time calculations of Feynman diagrams are carried out in 
momentum space, we should hope to find some advantage in mimiking these cal- 
culations in curved space-time. This indeed turns out to be the case, and in this section 
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we shall repeat in curved space-time a calculation performed by Collins (1974) in flat 
space-time. Using dimensional regularisation, and the 't Hooft (1972) mass-indepen- 
dent renormalisation scheme, Collins calculated the pole terms of all the vertex and 
self-energy diagrams up to second order in A44 theory, showing explicitly that mass- 
independent renormalisation does work. In curved space-time, showing that a mass- 
independent renormalisation scheme can be used is even more important than in flat 
space-time, as this is equivalent to showing that the state-dependent infinities 
mentioned in the introduction do in fact cancel. It is also necessary for this to be the case 
if the desire to calculate the majority of the space-time depedent parts of the S matrix 
without the need to worry about infinities and regularisation is to be realised. 

The mass-independent renormalisation procedure is developed as in flat space-time 
('t Hooft 1973, Collins 1974). With the additional possibility of 6 being renormalised 
we write 

2 2 m2b,,A& m i = m  +6m = m 2 + 1  I------ 
u = l  j = u  ( n  -4)" ( 3 . 1 ~ )  

(3 . lb)  

(3.2) 

the final quantity being the field renormalisation constant. The special problems 
associated with defining S-matrix elements in curved space-time have been discussed in 
the references given earlier (Birrell and Taylor 1978, Birrell and Ford 1978, Bunch et a1 
1979) and will not be repeated here. We merely note that once the problem of choosing 
'in' and 'out' vacuum states has been handled one can write down expressions for 
physical quantities of interest in terms of matrix elements between 'in' states. 

Working in the interaction picture we decompose the field 4as  

then at order m in perturbation theory the S matrix receives a contribution (for m > 0) 

It is a straightforward task to obtain coordinate space expressions for all the connected, 
one-particle irreducible components of (kllS'"'I k2 )  to second order (these being the 
components contributing to the self-energy), where by (kll  we mean in(kll in the 
notation of Birrell and Ford (1978). We find 

(3.6) 
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(3.7) 

Equation (3.6) corresponds to figure l (a )  of Collins (1974), plus its counterterm, while 
the first, second and third lines of (3.7) give his figures l(c), l (b)  and l(d),  respectively. 
To determine the relation between the bare and renormalised coupling constants we 
shall also need the connected, one-particle irreducible, four-particle S-matrix elements 
to second order: 

(k i ,  kzIS(')lk3, k 4 )  = -iAB [ J q F z ,  (x)Fz, (x)Fk3(x)Fk.,(x) d"x (3.8) 

(k l ,  k21S(2)Ik3, h ) ( c o n n . , o p i )  

+F?, (x)F:, (y)Fk3(x)Fk4(y) +F?, (y)FZ2 (X)Fk , (X)Fk , (y ) ]  d"x d"y (3.9) 

which corresponds to Collin's figure 2. 
We now wish to consider the infinities generated by (3.6)-(3.9) and show how they 

are removed by the various counterterms. Since we are only interested in the renor- 
malisation procedure we shall not need explicit expressions for the modes Fk (x). 
However, when it comes to calculating finite parts of the S-matrix elements (Birrell et a1 
1980), these are needed and are calculated in a straightforward manner using the 
momentum space formulation (Birrell 1979a). In fact, in what follows, rather than 
working with the S-matrix elements themselves we shall consider Il(x, x'), the self- 
energy, defined by (see Birrell and Taylor 1978) 

( k l ( S l k 2 ) - S k l k 2  = I J < G F &  (x)Fk2(x')IT(x, x') d"x d"x'. (3.10) 

To perform the calculation, all we need is the Feynman propagator in n-dimensions, 
and we have seen how to determine this in momentum space in the previous section?. 

From (3.6), (3.1) and (3.2), we have a contribution to the self-energy to first order 
which we shall denote 11(131) and which is given by 

x)-- (m26ii  + &R (x))] (3.11) 
iAR S " ( X  -x') 

J Z  * ( n  -4) 

t One can show that the propagator of the previous section is in fact an (outi. . .lin) expectation value which 
should not strictly be used in the calculation of (inl. . .jin) S-matrix elements. However, the equations for the 
self-energy are the same in either set of states; only the external wavefunctions are different. This then is a 
subtlety which need not concern us here; it is discussed fully in Birrell (1979b). 
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We thus need to calculate GJx, x ) ,  which we write in analogy to (2.16) as 
3 

1 = 1  
GF(x, X )  = 1 G ~ ' ( x ,  X )  

and find, using (2.6), (2.17a), (2.12) and (2.11), that 

(3.12) 

G ~ ' ( X ,  x )  = (2~)-"[fi(77)]~-'" d"p(p2- m? +ie)-' 

= -i(4*)-"/2(m? )("/2)-1[fi(77)12-"r( 1 - E )  
2 

(3.13) 

In performing the integral we have used equation (A.l) of Collins (1974). Next, using 
(2.6), (2.17b) and (2.12) we have 

) = -i(4p)-"/2(m5)("/2)-1[fi(77)~2-n(-+y-1 2 + ~ ( n  -4) . 
n -4  

where pf = ( p b ,  p ' ) ,  and we have suppressed the writing of ie. Changing from integra- 
tion variable p h  to ko = p o  -pb, introducing a Feynman parameter and performing the 
n-dimensional integral we find 

Gg'(x,  x )  = -i(4~)-""[fl(q.)]~-"r( 2 - i )  / dko eiko"c(ko) 

X I O  dx[m! - - k i x ( l - - ~ ) ] ' " / ~ ' - ~  

00 

-m 

1 

1 

x [ y + lo dx In[" - k i x  (1 - x)]] + O(n - 4). (3.15) 

The final component of GF comes from (2 .17~) :  

where p f  = ( p b ,  p ) ,  q = (qO, p ) .  We see by power counting that this component will not 
have a pole at n = 4 (for details see Birrell 1979b). 

Some manipulation using the inverse of (2.16) and definition (2.8) allows us to write 

(3.16) GF(x, x )  = GTIe (x, x )  + GFnitc (x,  x )  

where 

(3.17) 
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2 i m- Gpite (x, ) = - y [ m 2  + (<-$)RI[ y - 1 +In( .)] (477) .nWq) 

x { 1 +Io' In[ 1 - (?)'xi1 -x)] dx) dko 

Upon substituting (3.18) and (3.11) (expanding p4-" = 1 + ( 4 - n )  l n p  + 0 ( ( 4 - t ~ ) ~ ) ) ,  
we see that the pole term can indeed be absorbed into mass and 5 renormalisations if we 
take 

b l l =  -(16n2)-' 

d l l =  -(<-2)/(16n2)-' (3.19) 

which, in the case of bll ,  is the same as obtained by Collins (1974) in flat space (there 
being no dii in flat space). 

We next turn to the second-order calculation, starting with the vertex function (3.9). 
We have at second order 

From (2.6) and (2.12) we have 

Performing an obvious change of variables and using (2.16) we may write 

where 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Next, using (2.17a), introducing a Feynman parameter and using Collins's (1974) 
equation (A.l)  we find 

S ( ko - k 6) +finite. 
2 i (4~)-""  = -  

( n  -4) 
(3.25) 

Use of power counting and the observation that there are no overlapping divergences in 
the diagram under discussion shows that all the other I(isi)  are finite at n = 4 and thus do 
not contribute any pole terms. In a calculation of the finite parts of the S-matrix 
elements all the remaining I(isi)  would have to be calculated, but this can be done 
numerically, without regularisation using the formulae given above. 

Substitution of (3.25) into (3.23) gives 

(3.26) 

Using this in (3.21), which is then substituted in (3.20), expanded around n = 4 using 
J q =  on, gives 

3iA 
1 6 ~ ' ( n  -4) = -  J ~ F ; ,  (x)F;,  (x)Fk3(x)Fk4(x) d"x +finite. (3.27) 

The pole in (3.27) is cancelled by the pole arisingfrom the substitution of (3.2) to second 
order into (3.8) if we take 

a12 = -3(16r2)-' (3.28) 

once again in agreement with the result obtained by Collins (1974) in flat space-time. 
We may now obtain the contribution to the self-energy coming from the substitution 

of (3.2) to second order into (3.6), but not including the Sm' and S t  terms, which can 
conveniently be taken account of later by using the bare rather than the renormalised m 
and 5 in the inverse propagator in the right-hand side of equation (3.50), as was done by 
Collins (1974) in Minkowski space. We shall denote this as 11(1,'): 

II"")(x, x') ={;F'-"[AR + a 1 2 A i ( n  -4)-'IG$''(x, x) 

S"(X -x') 

J-gxf 
+3al2AiGYte(x,  x ) ( n  -4)-'} - 

+finite. (3.29) 

The product of u12(n -4)-' and GYte shows the first occurrence of state-dependent 
infinities of the type mentioned in the introduction. Unless all such terms cancel when 
all contributions to II of second order are added together we shall not be able to use 
mass-independent renormalisation. 
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We next obtain the contribution to II from the first two terms of (3.7). Denoting this 
contribution to second order as we have 

r~(~~l)(x, x ' )  = A ;  1 J<G;(x, y )  

x j:p4-n[(m2bll + d l l ~ ( y ) ) ( n  - 4 ) ~ ~  +4ik4- ~ G P - ( Y ,  y) ]  

i 
y ) )  d"yS"(x - x ' ) / J G  

(y, y)} d"y S " ( x  - x ' ) / J q + f i n i t e  (3.30) 

where in obtaining the second equality we have used (3.17) and (3.19). We only need 
the pole part of G; which has already been calculated; it is obtained by substituting 
(3.26) into (3.21). We thus obtain 

+iP8-ZnGpite 

(3.31) 

We now come to the only difficult part of the calculation, namely the contribution to 
the self-energy coming from the third line of (3.7). Denoting this as 111'232' we have to 
second order 

(3.33) 

and 

(3.36) 
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By careful power counting analysis one can show that only the terms in the first line of 
(3.36) will contribute pole terms. This simplifies matters considerably, although we 
note that the third term does include a factor of the t matrix, and thus depends heavily 
on the space-time under consideration. Let us consider this term first. 

From (3.35) and (2.17) we have 

~ ( 1 , 3 1 1 )  (k, kb) = p 8 - 2 n  I 1 1 
(p’ -m?)[ (p+q+k)’ -m?]  

(3.37) 

where r = (ro, 4), k‘ = (kb, k).  Performing the p integration by introducing a Feynman 
parameter and using (A . l )  of Collins (1974) we find 

Substituting (3.38) into (3.34) we have, after carrying out the dk and d(ko+kh) 
integrals, 

(3.39) 

where q’ = (qb, 4) and we have changed from an integral with respect to ko - kb to one 
with respect to qI, = qo + ko - kb. One can already see that this contribution to G i  when 
substituted into (3.36) and then (3.32) gives apole term which exactly cancels the sum of 
the two poles involving the t matrix which arise when 11(231) in (3.31) is added to 11(1*2) in 
(3.29). 

Next we consider J(1s1s2), which from (3.34) and (2.17) is 

dnp d”q. 
1 1 

X 
( p  + q + k)2 - m! ( p  + q + k’)’- m- 

(3.40) 

Introducing Feynman parameters and performing the p and q integrals we have 

J ( 1 ~ 1 , 2 ) = p 8 - 2 n ~ n r ( 4 - n ) ~ ( d o )  (1 11 d a  d p  d r d p S ( 1 - a - p - r - p )  
1 

0 

4 - 3 4 2  x [ a p + ( a + ~ ) ( r + p ) I  {m2[cup+(a+P)(r+p)I-as2ap(r+p) 

-$d2[ap(Y + p )  + 4 ( a  + p ) y p I  +$ds@(r - P ) ) ” - ~  (3.41) 

where d = k’- k, s = k‘+  k. The extraction of the pole terms from the Feynman 
parameter integral is a little involved and is outlined in the appendix, giving 

ln[m? -d ix( l -x) ]dx  
2 -1+2y  2 ,+--+- 

(3.42) 
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Substituting (3.42) into (3.34) gives 

p8-2nG%(1,1,2)(X, x!) 

1 2y-1  
p ( k o )  [ - + ___ 

(n - 4)' 2(n - 4) 

-) dx] dko + finite. 

CO 2R-2(77)S" (x - x') - - 
( 1 6 ~ ? ) ~ J %  I-CO 
(n-4)  o 47rF2.n2(77) 

2 2  m- -kox( l -x )  1 +- 1' In( (3.43) 

We finally obtain the contribution of 

1 

which is given by 

1 
d"p d"q. (3.44) p8-2"S(kb - ko) I '  p -m-  q -m-  ( p + q + k ) ' - m ?  

We can easily obtain the pole term of (3.44) using Collin's (1974) equation (19). Upon 
substituting this into (3.34) we obtain a contribution 

J(l,l ,l) = 

p8-2nG2(1,1,1) (x, 

- 6m2K2(77) S"(x -x ')  
(16~ ' ) '  Jz 

)I +finite. (3.45) 
1 +- x -+--- 1 Y - 1  1 

[ ( a  -4)' (n -4) 2(n -4) (n -4) 1n(4~p2R2(77)  

If we note that for an arbitrary scalar test function CC, 

(3.46) 

( ~ ' ) S " ( X  -~'),:ac(sz("-~'~'(77)rl/(X, x')) d"x dxx '+O(n -4) 

n - 2  
n - 1  = I -[U, + (-) R (77 )] $(x, x) d"x + O( n - 4) (3.47) 

which implies 

[ ~ ( 7 7 ) n ( 7 7 ' ) ] 3 ( 2 - " ' / 2  [a,a,~ x , " (x -x')] = [U, + ~ R ( ~ ) ] S ~ ( X  -x ' ) /J<+O(n -4).  (3.47) 

Using (3.47) in (3.46) and adding the result to (3.43) in the manner dictated by (3.36) we 
have, after some manipulation using the inverse of (2.15), 

( x ,  x ' ) + ~ G ~ ( ~ , ~ , * ' ( x ,  x ' )  CL 8-27 [ ~ 3 ( 1 , 1 , 1 )  
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+- 6 S " ( X - x ' )  - (-[mz+(t-i)~l[-+--- 1 y - 1  1 
( 1 6 ~ ' ) '  J-g,, (n-4) '  n - 4  2(n-4)  

x (  1 + 1 , ' l n [ l - ( ~ ) 2 x ( l - x ) ]  dx] dk,,). (3.48) 

To this we add (3.39) multiplied by three and substitute the result in (3.32) to obtain 
II(2,2). Finally we add 111'232' to II(2s1) ,in (3.31), andII"32'in (3.29), retainingonly the pole 
terms: 

ihR 1 6 " ( x  - x ' )  

1 6 ~ '  (n -4) -gx, 
[m2+(5-i)Rl]  J- ' (3.49) 

We immediately see that all the unwanted non-geometrical infinities have cancelled, 
leaving only poles that can be absorbed into mass, 5 and 'wavefunction' renor- 
malisations. To see this we write the complete inverse propagator to this order as (see 
Birrell and Taylor 1978) 

G'-'(~,x')=i[O,+.$~R+m28] 8" (X -x ' )  - npole(X, x t )  - nfinite(x,  x t )  

G 

(3.50) 

In obtaining the second equality in (3.50) we have substituted (3.1) to second order for 
tB and m i .  With 2 as given in (3.3.),2G'-l will be analytic at n = 4 provided we take 

(3.51) 
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Once again the results obtained for h I 2 ,  b22 and c12 are the same as obtained by 
Collins (1974) in flat space-time. It is also worth noting that even in the ‘conformally 
invariant’ case in which m = 0, 6 = i, it is necessary to perform a renormalisation of 6. 
That is, 6 = 2 and m = 0 does not imply sB = 3, even though it does imply mB = 0. Thus if 
the bare Lagrangian is conformally invariant the renormalised one will not be. The 
reason for this is simple; the extension to n dimensions breaks the conformal invari- 
ance, since a Lagrangian with 6 = and m = 0 is only conformally invariant for n = 4. If 
we had extended in such a way as to maintain conformal invariance, then both the bare 
and renormalised Lagrangians would be conformally invariant. An example of a 
particular calculation using an extension scheme which maintains conformal invariance 
in n dimensions is found in the paper of Drummond (1975) who considers massless A44 
to third order in spherical space-time. Drummond notes that the curvature does not 
induce any divergent mass terms (R =constant) in the Lagrangian. Had he used a 
scheme which did not extend conformally then such terms would have arisen as we have 
found above. The difference between the two results is no more than the usual 
renormalisation ambiguity and does not affect physical results. 

4. Conclusion 

It has been shown that the momentum space technique for curved space-time quantum 
field theory calculations (Birrell 1979a) is well suited to calculations involving interac- 
ting fields. In particular, it allows the use of dimensional regularisation and Feynman 
parameter techniques for the calculation of the infinite parts of S-matrix elements 
exactly as in flat space-time. In addition, once these infinite parts have been renor- 
malised away it offers powerful tools for the calculation of finite parts of physically 
interesting amplitudes. Admittedly the calculation of all the finite parts to second order 
in 44 theory would be an enormous undertaking for most non-trivial space-times. 
However it is perfectly feasible to consider a calculation to first order, and from 
preliminary analysis (Birrell and Ford 1978) we expect important contributions to 
cosmological particle production (for example) from contributions at this order. More 
detailed studies of first-order finite parts are underway (Birrell et a1 1980). 

The calculation in the previous section is of importance in its own right, as it gives 
independent confirmation to the statement of Bunch et a1 (1979) that all thcstate- 
dependent infinities cancel to second order. It is not clear that this cancellation will 
continue to higher orders (see Birrell and Taylor (1978) for a detailed discussion). 

The subject of interacting quantum field theory in curved space-time thus has many 
topics of interest to be considered, both of a fundamental nature and in its application to 
cosmology and astrophysics. In both areas the momentum space method should 
provide a useful means for further development. 
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Appendix 

We consider the extraction of the pole term from the integral (3.41). The method used 
is similar to that used by Collins (1974, appendix B) for the extraction of the pole in the 
integral occurring in (3.43). 

The integral in (3.41) can possibly give rise to poles from the regions of the range of 
integration where a/3 + ( a  + P ) ( y  + p )  = 0. These regions are given by a = 0, p = 0; 
a = 1, p = 0; a = 0, p = 1; in each case y, p are constrained by the limits of integration 
and the delta function. 

We first obtain the pole from a = 0, p = 0 by making the change of variables 

a = x y  P = x ( l - y )  y = z ( l - x )  p = ( l - x ) ( l - 2 )  (AI)  

and we consider the p integral to have been removed using the delta function. Now the 
singularity at a + p  = 0 lies only in the x integration, as x + 0, for then ap + 
( ~ + P ) ( Y + P ) - x  and 

where we have also used the fact that the Jacobian of the transformation is x(1 -x)  - x 
as x + 0. The x and y integrations can be performed and the pole extracted, giving 

1 2 
n - 4  n - 4  

J(1*1*2) - rr"p(do)(  -+ y )  -[ 1 + ( n  - 4 )  6' ln[m! - d 2 z ( l  - z ) ]  dz 

Next consider the pole at a = 0, p = 1 which, by symmetry is equal to the pole at 
p = 0, a = 1. Making a change of variables 

a = x ( l - x z )  P = ( l - x ) ( l - x z )  y = x y z  p = z x ( l - y )  (A41 

which isolates the possible singularity to the x integral, since then 

ap + (a  + @ ) ( y  + p )  - x(1 + 2) as x + 0 

we have 
1 

J ( l , l , 2 )  - d r ( 4  - n )  v ( d o )  dx Z X ~ - " ' ~ ( ~  + ~ ) - " / ~ ( m ~ ) ~ - ~ .  

The integral is ( A 5 )  gives no pole. 
There is still, of course, a pole arising from the pole in the gamma function 

multiplying the finite part of the integral in J(19132). To calculate the finite part of the 
integral in (3.41) we subtract from it the integral in ( A 2 )  and let n + 4 .  This gives 

1 -x  1 jO1 dx 6' dy I' d ~ X ( x ' ( x [ y ( l  - y )  - I]+ 1) 2-T) x 

= - jo ' dy [ l+ ln (y ( l -y ) ) ]= l .  

Thus to ( A 3 )  is added the pole part of rr"r (4-n)  v ( d o )  x 1 which is - r r " ~ ( d o ) ( n  -4)- ' .  
Doing this, noting that d 2  = d i ,  and changing integration variable z to x gives (3.42). 
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